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In “stochastic systems”—such as Partially Observable Markov Decision Processes 
(POMDPs) and Stochastic DiEerential Equations (SDEs) —randomness in behavior leads to 
system states being represented by probability distributions. Achieving the desired behavior 
in such systems (e.g., meeting safety constraints and attaining specific goals) requires 
designing system parameters, such as control inputs, to maximize the probability of success 
or limit the risk of failure under uncertainties arising from state probability distributions [1]. 
This process involves reshaping the probability distributions of system states through 
parameter adjustments to satisfy probabilistic constraints, commonly formulated as 
chance constraints [1, 2]. 

Coming from a background in mathematics, stochastic systems, and AI, my insight is that 
generative AI models and chance-constrained stochastic systems share the same 
underlying mathematical principles. In both cases, the objective is to obtain a desired 
probability distribution that captures the target behavior—such as achieving a probability 
distribution that maximizes the probability of success in stochastic systems or achieving a 
probability distribution to enable high-quality, diverse data generation in generative AI 
models. 

More specifically, in "generative AI", the goal is to learn the underlying distribution of a 
dataset and generate new data by sampling from it. One example is autoregressive models, 
such as large language models (LLMs), which are trained to learn a probability distribution 
over the next token given the preceding context. Another example includes diEusion models 
and flow-matching models, where the process starts with pure noise and learns a 
transformation—denoising process or a continuous flow—that maps the noise distribution 
to the data distribution, enabling the generation of new data samples [3]. This process of 
transforming an initial noise distribution into a desired one closely parallels what occurs in 
stochastic systems, where the goal is to steer the system’s initial probability distribution 
toward a target distribution that satisfies risk or safety constraints [4]. In generative AI, this 
transformation is accomplished through learned mechanisms—such as denoising 
processes, continuous flows, or autoregressive training—whereas in stochastic systems, it 



is guided by (uncertainty-aware) planning and control algorithms. In both cases, the 
fundamental challenge is the same: controlling the evolution of probability distributions—
whether to ensure safety in stochastic systems or to generate high-quality, diverse data in 
generative. 

 

Figure: Stochastic Systems Vs Generative AI - [Right] Generative AI systems are at the forefront of the recent AI 
revolution, driving advancements across multiple domains. The primary objective of GenAI is to model 
complex data distributions, either explicitly—through methods such as variational autoencoders (VAEs), 
autoregressive models, normalizing flows, and diMusion models—or implicitly, as seen in generative 
adversarial networks (GANs). For instance, denoising diMusion and flow matching approaches have emerged 
as state-of-the-art techniques in various fields, including image generation (e.g., Stable DiMusion), video 
generation (e.g., Sora), and scientific applications (e.g., AlphaFold3); These models generate new data by 
transforming simple initial distributions (e.g., Gaussian noise) into complex data distributions, which are then 
used in the sampling process to produce realistic outputs. To achieve this, they construct/learn a mapping—
represented by neural ordinary diMerential equations (ODEs) or stochastic diMerential equations (SDEs)—that 
iteratively refines noise into meaningful data. [Left] Risk-aware autonomy involves transforming the initial 
distribution of an stochastic system's states—represented by ODEs or SDEs— into desired probability 
distributions that represent the system's safe and optimal behavior. Under these probability distributions, the 
system must satisfy safety constraints and achieve optimal behavior with high probability, ensuring risk-
bounded performance. 

 

Given this observation, we can leverage similar reasoning and algorithmic tools from 
stochastic systems to develop risk-aware AI models. For example, this involves: 1) 
Uncertainty characterization, where input uncertainty arises from adversarial distributions, 
noise, or perturbations, 2) Uncertainty propagation through the AI model to quantify the 



resulting output distribution for safety and robustness analysis, 3) Risk-aware training, 
where the propagated uncertainties are incorporated during training to enforce safety and 
improve robustness. Such an uncertainty-aware framework for AI models enables the 
estimation of the full range of possible outputs corresponding to an input distribution that 
captures a variety of potential input scenarios. For example, the input distribution may 
represent a set of perturbed images or semantically similar text samples. By propagating this 
distribution through the model, we can analyze the full spectrum of resulting outputs or 
behaviors. Unlike traditional safety approaches that focus on specific adversarial or stress-
test scenarios, this framework supports a more comprehensive safety and robustness 
analysis by considering a family of input-output behaviors. It also allows us to quantify 
robustness under input perturbations by estimating the risk of producing undesirable 
outputs—for instance, the risk of generating harmful or disallowed tokens, or the risk of 
misclassifying images or text under adversarial attacks. Additionally, the framework enables 
evaluation of robustness to semantically similar inputs by assessing the model’s 
consistency in its responses to inputs that diEer slightly in form but are equivalent in 
meaning. 
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