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In “stochastic systems”—such as Partially Observable Markov Decision Processes
(POMDPs) and Stochastic Differential Equations (SDEs) —randomness in behavior leads to
system states being represented by probability distributions. Achieving the desired behavior
in such systems (e.g., meeting safety constraints and attaining specific goals) requires
designing system parameters, such as controlinputs, to maximize the probability of success
or limit the risk of failure under uncertainties arising from state probability distributions [1].
This process involves reshaping the probability distributions of system states through
parameter adjustments to satisfy probabilistic constraints, commonly formulated as
chance constraints [1, 2].

Coming from a background in mathematics, stochastic systems, and Al, my insight is that
generative Al models and chance-constrained stochastic systems share the same
underlying mathematical principles. In both cases, the objective is to obtain a desired
probability distribution that captures the target behavior—such as achieving a probability
distribution that maximizes the probability of success in stochastic systems or achieving a
probability distribution to enable high-quality, diverse data generation in generative Al
models.

More specifically, in "generative Al", the goal is to learn the underlying distribution of a
dataset and generate new data by sampling from it. One example is autoregressive models,
such as large language models (LLMs), which are trained to learn a probability distribution
over the next token given the preceding context. Another example includes diffusion models
and flow-matching models, where the process starts with pure noise and learns a
transformation—denoising process or a continuous flow—that maps the noise distribution
to the data distribution, enabling the generation of new data samples [3]. This process of
transforming an initial noise distribution into a desired one closely parallels what occurs in
stochastic systems, where the goal is to steer the system’s initial probability distribution
toward a target distribution that satisfies risk or safety constraints [4]. In generative Al, this
transformation is accomplished through learned mechanisms—such as denoising
processes, continuous flows, or autoregressive training—whereas in stochastic systems, it



is guided by (uncertainty-aware) planning and control algorithms. In both cases, the
fundamental challenge is the same: controlling the evolution of probability distributions—
whether to ensure safety in stochastic systems or to generate high-quality, diverse data in
generative.
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Figure: Stochastic Systems Vs Generative Al - [Right] Generative Al systems are at the forefront of the recent Al
revolution, driving advancements across multiple domains. The primary objective of GenAl is to model
complex data distributions, either explicitly—through methods such as variational autoencoders (VAEs),
autoregressive models, normalizing flows, and diffusion models—or implicitly, as seen in generative
adversarial networks (GANs). For instance, denoising diffusion and flow matching approaches have emerged
as state-of-the-art techniques in various fields, including image generation (e.g., Stable Diffusion), video
generation (e.g., Sora), and scientific applications (e.g., AlphaFold3); These models generate new data by
transforming simple initial distributions (e.g., Gaussian noise) into complex data distributions, which are then
used in the sampling process to produce realistic outputs. To achieve this, they construct/learn a mapping—
represented by neural ordinary differential equations (ODEs) or stochastic differential equations (SDEs)—that
iteratively refines noise into meaningful data. [Left] Risk-aware autonomy involves transforming the initial
distribution of an stochastic system's states—represented by ODEs or SDEs— into desired probability
distributions that represent the system's safe and optimal behavior. Under these probability distributions, the
system must satisfy safety constraints and achieve optimal behavior with high probability, ensuring risk-
bounded performance.

Given this observation, we can leverage similar reasoning and algorithmic tools from
stochastic systems to develop risk-aware Al models. For example, this involves: 1)
Uncertainty characterization, where input uncertainty arises from adversarial distributions,
noise, or perturbations, 2) Uncertainty propagation through the Al model to quantify the



resulting output distribution for safety and robustness analysis, 3) Risk-aware training,
where the propagated uncertainties are incorporated during training to enforce safety and
improve robustness. Such an uncertainty-aware framework for Al models enables the
estimation of the full range of possible outputs corresponding to an input distribution that
captures a variety of potential input scenarios. For example, the input distribution may
represent a set of perturbed images or semantically similar text samples. By propagating this
distribution through the model, we can analyze the full spectrum of resulting outputs or
behaviors. Unlike traditional safety approaches that focus on specific adversarial or stress-
test scenarios, this framework supports a more comprehensive safety and robustness
analysis by considering a family of input-output behaviors. It also allows us to quantify
robustness under input perturbations by estimating the risk of producing undesirable
outputs—for instance, the risk of generating harmful or disallowed tokens, or the risk of
misclassifying images or text under adversarial attacks. Additionally, the framework enables
evaluation of robustness to semantically similar inputs by assessing the model’s
consistency in its responses to inputs that differ slightly in form but are equivalent in
meaning.
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